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POONEN'S QUESTION CONCERNING ISOGENIES 
BETWEEN SMART'S GENUS 2 CURVES 

PAUL VAN WAMELEN 

ABSTRACT. We describe a method for proving that two explicitly given genus 
two curves have isogenous jacobians. We apply the method to the list of genus 
2 curves with good reduction away from 2 given by Smart. This answers a 
question of Poonen. 

1. INTRODUCTION 

By abuse of language we will say throughout that two curves are isogenous if 
their jacobians are isogenous. 

In [5] Smart lists all genus 2 curves with good reduction away from 2. He 
organizes them into putative isogeny classes. In [4] Poonen asks for a proof that 
the isogeny classes as given by Smart are in fact correct. We solve this problem 
in a very concrete way by explicitly computing isogenies between the curves. This 
can be done by essentially the same method as was used to compute explicit CM 
morphisms in [6]. That is, compute such an isogeny numerically to high precision 
and then guess the exact values for the coefficients of this morphism. It can then be 
checked that these exact functions do define an isogeny. The morphism is computed 
numerically by going through the analytic representation of the jacobian of the 
curve-we compute the necessary integrals to go from the abelian variety to the 
torus, multiply by a matrix giving the complex representation of the morphism, 
and then use theta functions to go back to the abelian variety. 

Note that this method, combined with comparing the number of points on re- 
ductions of the two curves (as done by Smart), should be able to decide whether 
two curves are isogenous or not. That is, by day compute the numbers of points on 
the two curves at bigger and bigger primes. If the number of points at some prime 
do not agree, the two curves are not isogenous. By night do the computations de- 
scribed in this paper to higher and higher precision. If the computation succeeds, 
the curves are isogenous. 

I would like to thank Bjorn Poonen, who, upon hearing about the work in [6], 
pointed out that the same techniques should be tried on the present problem. 
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2. DEFINITIONS AND NOTATION 

Recall that any genus two curve C is hyperelliptic and can be given in one (or 
both) of the two forms 

(1) C:y2 = f(x)= { j6 z(x-a1). 

where the ai are distinct points in C. We assume that the curve is defined over Q, 
so f(x) E Q[x]. 

If we regard C as a Riemann surface, the ai are the branch points of the double 
cover of P by C. Let {A1, A2, B1, B2 } form a symplectic basis for the homology of 
C. 

Let q1 = dx/y and 02 = xdx/y. Then {ql, q2} forms a basis for the holomorphic 
1-forms on C ([2, p. 254] and [3, Proposition IIIa.5.2]), defined over Q. We define 
the period matrix P of C by 

(2) p(fBl 01 fB2 01 fAl 01 fA2 01 

f2 fB12 fB2 02 fA 02 fA2 2 0I 

Let wi and W2 be the two 2 x 2 matrices such that P = (wl ,w2) 
If we define r to be the matrix w- 1wl, then r is in j2, the Siegel upper half-space. 
Let A be the free abelian group in C2 generated by the columns of P. Then A 

is a lattice in C2, and the jacobian J of C is given by C2/A. 
The jacobian also has the structure of an abelian variety. Let a be an isogeny 

from one of these abelian varieties, Ji, to another, J2. If we think of Ji as 2/i, 

then a induces a linear map from C2 to itself. We denote the 2 x 2 matrix giving 
this map by -6. As oe represents a map from C2/Aj to C2/A2, there exists a 4 x 4 
rational integer matrix M such that 

(3) oPl = P2M. 

As P1 and P2 are defined using holomorphic 1-forms defined over Q, we have that 
-a is the complex representation of a morphism defined over a number field F if 
and only if -a has entries in F. So if we are looking for a rational isogeny, we want 
M E M4(Z) and ot E M2(Q). 

Recall that the jacobian is the unique abelian variety birationally equivalent to 
the symmetric product of the curve with itself, C(2). We therefore think of points 
on the jacobian as unordered pairs of points on the curve (written as a Sum of two 
points). The only pairs for which this breaks down are pairs Q + L(Q), where L is 
the hyperelliptic involution. All such points correspond to the zero element of the 
jacobian. For the rest of this paper we will denote by Ql + Q2 the image of Q + Qo 
under the map induced by a from C(2) to C(2), where Q = (x, y), Qi = (xi, yi), 
i = 1, 2, and Qo is some fixed point on the curve C,. We will always pick Qo to be 
one of the Weierstrass points. That is, if f(x) (in the hyperelliptic equation (1)) is 
a sextic we let Qo = (ai, 0) for some i. If f(x) is a quintic we will pick Qo to be 
the (rational) point at infinity. 

Note that Xi + X2 and x1x2 can be considered as meromorphic functions on the 
curve. As these functions do not depend on the y-coordinate of Q, we see that 
x1 + x2 and x1x2 are rational functions in x. From now on si = x1 + x2 and 
82 = XiX2 will denote these rational functions of x. If a is defined over Q, we see 
that the coefficients of si and 82 as functions of x are in Q(ai) (where Qo = (ai, 0)). 
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We will now proceed as follows. Given two genus 2 curves Ci and C2, we can 
compute their period matrices Pi and P2 to high precision by numerically doing 
the integrals in (2). In Section 3 we will show how, from P1 and P2, we can find 
matrices oe and M such that (3) holds. From a- we can compute approximations 
to the rational functions giving a as a morphism of abelian varieties. See Section 
4. We then guess exact values for these rational functions and check that they do 
define an isogeny (Section 5). 

To compute the period matrix of a curve C we actually used the following 
method. If the curve is given by a sextic we find a linear fractional transformation 
that sends Qo to oo. This transforms the curve into one given by a quintic (but 
not defined over Q). Now we use the same method (and programs) used in [6] 
to compute the period matrix P of this curve to high precision. For the analytic 
part of our computations this form of the period matrix is sufficient and, in fact, 
simplifies things. On the other hand, for finding -a in the next section we certainly 
need the correct period matrix for the original curve in sextic form (so that it's 
defined over Q). This can be found by multiplying P by the 2 x 2 jacobian matrix 
coming from the linear fractional change of variables. 

3. FINDING A MATRIX REPRESENTING A RATIONAL ISOGENY 

Given two period matrices Pi and P2 to high precision, we want to find o E 
M2(Q) and M E M4(Z) such that (3) holds. 

Let M - (a b), where 

all a2 b= bl b12 1 C Cll C12 d = (dil d12 a a2l a22 J 
b 

b2l b22 C2l C22 J 
d 

d2l d22 J 

then we see that equation (3) becomes 

(4) (T2a + c) = (T2b + d)ri. 

Let 
(T, tll t12 -(Sll S12 Ti = 

1t2l t22 ) and T2 S S2l S22 

Also let 

V1 = {1, 811, S12, t11, s11t11 ,s12t11, t21,7s11t21,s 12t21}, 

V2 = {1, 81, 812, t12,7s81t12, 812t127 t22,7s11t22,s 12t22}, 

V3 = 1, 821, 822, t11, S21t117 822t117 t21, 821t217 822t2117 

V4 = {1, S21, S22, t12,s 21t127 S22t127 t22,s 21t22,s 22t22}, 

and 

a1 = {-cli,-a1l,-a21, d1i, b1i, b21, d12, b12, b22}, 

a2 = {-C12,-a12,-a22, di,, b11 ,b217 d12, b127 b22}, 

a3 =I{-C21,-all,-a2l, d2l, b1i, b217 d22, b12, b22}, 

a4 = -C22, -a12 -a22, d2l, b117 b217 d227 b127 b221} 

In this notation equation (4) is 

vj*aj=0, fori=1, 2, 3, 4. 

Given rT and r2 to high precision, we can use an LLL based algorithm to find 
integer linear dependencies among the entries of the vi, that is, vectors 1, with 
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integer entries, such that vi . 1 = 0 (see for instance [1, Algorithm 2.7.4]). In fact, 
for each of the four vi, we compute a basis {lij}tL1 for all the linear dependencies 
that the algorithm finds. So for integer valued variables kij we get 

ni 

ai =Ikijlij for i = 1,2,3,4. 

We now solve this linear system for the entries of M with the kij in Z (Maple's 
isolve worked well). This gives new integer valued parameters ki, and we can 
write 

n 

(5) M = kiMi. 

Here each Mi is an integer matrix corresponding to an isogeny, not necessarily 
defined over Q. For each Mi we can compute the corresponding di. If P1 = (w1, W2) 

and P2 = (1r1,1r2), then 

di = wT1(7rla+7r2c). 

The entries of di will be (approximations to) algebraic integers in the field of def- 
inition of the isogeny corresponding to Mi. If we computed them to high enough 
precision, we can recognize them as exact algebraic numbers by an algorithm, again 
based on some form of lattice reduction (see for instance [1, Section 2.7.2]). If we 
embed all the exact di's into a common number field, it becomes another diophan- 
tine linear algebra problem to find integer coefficients ki such that oi = En kiai is 
in M2 (Q). In this way we find (hopefully) all oe E M2((Q) and the corresponding 
M E M4(Z) that solve equation (3). The degree of an isogeny is given by det(M), 
so if we want to have small si and s2 we should look for an o with det(M) as small 
as possible. In our case we just examined determinants of the M corresponding to 
small values of the parameters. 

4. GUESSING S1 AND 82 

Just as in [6], we will guess exact values of s, = Xl + X2 and 82 = X1X2 by 
computing the values of xi and x2 at enough points x so that we can solve a 
linear system in order to find approximations for the coefficients of the rational 
functions s, and 82* So we take many points Q, move them to the corresponding 
quintic if necessary, and apply the method in [6] to find the (approximate) images 
on the second curve (where multiplication by -i now takes points on one jacobian 
to another). Of course, the image points might need to be moved back to a curve 
in sextic form. It is here that our work is simplified by working with the period 
matrix for the curve in quintic form. The theory in [3] for computing the maps 
from the algebraic jacobian to the analytic jacobian and back (by theta functions) 
is worked out in detail only for the quintic case. 

It turned out that the functions s, and 82 are relatively simple for all of Smart's 
curves (see Section 6), and working with a precision of about 100 was more than 
adequate and could be done in a very reasonable time. 

5. PROVING THAT S1 AND 82 ARE CORRECT 

So assume that we have an exact oe and (guesses for) si and 82 as exact rational 
functions of x. We want to check whether this data represents an isogeny. 
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Note that (Y1Y2)2 = f2(xl)f2(x2) can be written as a function of si and 82, 

and (by finding it's square root) we can therefore compute Y1Y2 up to a sign as a 
rational function qi of x, 

Y1Y2 = q1(x). 

Note that we can write Yi + Y2 = yq2 and ylxl + Y2X2 = yq3, where q2 and q3 
are rational functions of x. Now 

(Y ?+Y2) = f2(x1) +2q, +f2(x2) = fi(x)r2(s1,s2), 

(Xiyi + X2y2)2 = X2f2(Xl) + 2xlX2q, + X2f2(x2) = f1(x)r3(si, 82), 

so that we can also find Yi + Y2 and x1yi + x2Y2, up to two more sign ambiguities, 
as y times rational functions of x, namely the square roots of r2 and r3. 

As in [6], we want to check that 

I dxl 1 dx2 Call + afl2X 

yi dx Y2 dx y 
x1 dxl x2 dx2 af21? + a22X 

y1 dx Y2 dx y 

where a = ( . ), If we let ' denote differentiation with respect to x we can 

verify that 

( ldxl dx2 y = ( (sIs2q2 - 2sls2q2 - ssl2q2 - s1slq3 + 2slq3) 

yd dx / (sd - 4s2)ql 
and 

1i dxl x2 dx2 

y ? dx Y2 dx)Y 
= fi(x) (sis q2 - 3sisl sq -s1s2q2 + 2s2slq2 - s8sjq3 + 2sls2q3 + ssl 2q3) 

(S 2- 482)ql 

We can evaluate the right sides of these two equations in terms of x and check 
for which choice of the unknown signs we get linear polynomials and the correct 
coefficients aij. In this way we not only check that the given values of s, and 82 do 
give a morphism with complex representation da, but we also get the correct signs 
for Yi + Y2 and xlyl + X2Y2. 

So we see that having xl + x2, x1x2 and -a makes it easy to work out the image 
(in C(2)) of Q + Qo under the isogeny. If we want to know the image of a general 
element of Ji, say given by R, + R2, with R, and R2 points on Ci, we compute 
the images of R1 + Qo and R2 + Qo and add them on J2. This will be the image 
of R1 + R2, because an isogeny is a group homomorphism and Qo is a Weierstrass 
point, so that Qo + Qo represents the zero element on J1. 

6. RESULTS 

The full results, including a Mathematica program for checking the data (as 
explained in section 5), are available at http: //math. lsu. edu/-wamelen/. 

We use the following numbering system. The isogeny classes are numbered as in 
[5, Table 7]. The curves in each class are numbered by the order of occurrence in 
the class in [5, Table 7]. 
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TABLE 1. The isomorphic pairs 

n i j nil i I n i n i j n nn i i n i j n i l 
6 1 2 11 1 2 22 1 2 108 1 2 127 3 4 144 1 2 154 3 4 
6 4 5 11 3 4 45 2 3 109 1 2 128 1 2 144 3 4 155 1 2 
7 1 2 11 5 6 46 2 3 110 2 3 129 1 2 145 1 2 155 3 4 
7 4 5 16 2 3 100 2 3 110 4 5 132 2 3 145 3 4 160 1 2 
8 1 2 17 2 3 101 2 3 111 2 3 133 2 3 146 1 2 161 1 2 
9 1 2 17 4 5 106 1 2 111 4 5 134 2 3 147 1 2 162 1 2 
10 1 2 18 2 3 106 3 4 126 1 2 135 2 3 148 1 2 163 1 2 
10 3 4 18 4 5 107 1 2 126 3 4 136 1 2 149 1 2 
10 5 6 21 1 2 107 3 4 127 1 2 137 1 2 154 1 2 

Some of the curves in Smart's table are not only isogenous over Q but isomorphic. 
These pairs of curves are listed in Table 1. The actual isomorphisms can easily be 
found by the methods in [5, Section 7]. (Note that the corresponding sextic forms 
for these isomorphic curves are inequivalent.) 

In Table 3 we list s1 = xl + x2, S2 = x1x2 and -a for enough pairs of curves to 
give a connected graph on all the curves in each isogeny class. As was pointed out 
in the previous section, the given data makes it easy to compute the given isogeny 
algebraically. 

Looking at the table of curves, one quickly notices that many of the polynomials 
are related by replacing x with a small multiple of x and possibly multiplying the 
whole polynomial by a small integer. This means that many of the functions (s1 
and s2) in our table are similarly related. We therefore first list all the functions 
we need (in Table 2) and then express the isogenies in terms of these functions in 
Table 3. This substantially reduces the length of the tables. 

Note that all the entries in Table 3 are defined over Q. This need not have been 
the case. For some of the curves there exists no rational Weierstrass point, and 
we must use a non-rational point Qo. This usually means that s1 and s2 are only 
defined over the field over which Qo is defined. To minimize the size of s1 and S2 

we computed them for several choices of Qo, and it turned out that in all cases we 
were lucky and were able to find a choice of Qo that gives s1 and s2 in Q(x). 
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TABLE 2. The functions 

k fk gk 

8 4 

(-2 + x)x (-2 + X)2 

2 -32 4 
8 + x2 _2 

3 -2 2(1 + x2) 

x x2 

4 -2x 2 
2+ x2 2+ x2 

5 2(-2 + x) 4 - 12x + x2 

2 + x (2 + X)2 

6 -8(2 + 3x) 8(2 + 3x) 
6 4+8x+x2 4+8x+x2 

7 -16(3 + x) -2(37 + 24x + 5x2) 
-7 +x2 -7 +x2 

8 8x -2(2 - 4x + x2) 8 
6-4x+3x2 6-4x+3x2 

2x2 x2 

9 (2 + x)2 (-2 + x)2 

10 -2(-2 + x2) 2 - 4x - x2 
-2 - 4x + x2 -2 - 4x + x2 

11 -4(2-4x+x2) 2-4x+3x2 

6-4x+x2 6-4x+x2 

12 2(-5 + 2x + x2) 9 - lOx + 3x2 

123+2x+x2 3+2x+x2 

13 -2(-4 + x2) 4 - 4x + x2 
4 + 12x + x2 4 + 12x + x2 

14 -2(8 - 8x + x2) 32 - 48x + 36x2 - lOx3 + x4 14 
-8 + x2 2(16 - 8x - 2x2 + x3) 

15 -2(8 - 4x + x2) 128 - 144x + 72x2 - 14x3 + x4 

-8 + x2 4(32 - 8x - 4X2 + x3) 
16 -4(2 + 4x + 3x2 + 2x3) 2(2 + 8x + 5X2 + 2x3) 

2 + 4x + 5x2 + 4x3 2 + 4x + 5x2 + 4x3 

17 2x 2(-1 - 3X2 + 2x4) 
. ~~~~-1 - X2 + X4 -1 - X2 + X4 

18 -4x -2(-2 + 3X2 + x4) 
-4 + 2x2 + X4 -4 + 2x2 + X4 

19 -4(2 + 6x + 5X2 + X3) 8 + 20x + 26x2 + 14x3 + 3x4 
8 + 12x + 6x2 + 2x3 + x4 8 + 12x + 6x2 + 2x3 + x4 

20 2(16 + 8x2 + x4) -16 - 48x + 4x3 + x4 
-16 + 16x - 12x3 + x4 -16 + 16x - 12x3 + x4 

21 -2(-12 - 24x - 20x2 - 4x3 + x4) 12 + 40x + 52x2 + 28x3 + 7x4 
20 + 24x + 12x2 + 4x3 + x4 20 + 24x + 12x2 + 4x3 ?-x4 

2(-64 - 256x + 112X2 + 256x3 - 28x4 - 16x5 + x6) 

22 (-2 + x)2(16 + 32x + 40x2 - 8x3 + x4) 
4- 4x + x2 

(2 + X)2 

23 32 - 128x + 152x2 - 72x3 + 17x4 - 2x5 32 - 64x + 40x2 - 8x3 + x4 
(-2 + X)4X (-2 + X)4 
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TABLE 2. (continued) 

k fk gk 

24 4(64 + 192x + 240X2 + 144x3 + 35x4 + x5) 4(-64 - 128x - 80x2 - 16x3 + x4) 
x(-8 - 4x + x2)2 (-8 - 4x + X2)2 

25 2(2x - 4x3 + x5) -8 + 2x2 + x6 
-2 - 4x2 + 3x4 -2 - 4x2 + 3x4 

-4(64 - 64x + 48x2 - 24xX + 5x4) 

2 -128 + 192x - 160x2 + 64x3 - 18x4 + x5 
-256 + 384x - 640x2 + 320x3 - 84x4 + lOx5 -6 

2(-128 + 192x - 160X2 + 64x3 - 18x4 + x5) 

27 -4(4 - 8x + 4X2 + 4x3 + x4) 4(4- - 12X2 + 8X3 + 9X4 + X5) 
-8 + 36x - 16x2 - 12x3 + 2x4 + x5 x(-8 + 36x - 16x2 - 12x3 + 2x4 + x5) 

4(4 - 16x + 4X2 + 8x3 + x4) 4(4 - 8x - 12X2 + 16X3 + 9X4 + 2X5) 
28 -16 + 36x - 32x2 - 12x3 + 4x4 + x5 x(-16 + 36x - 32X2 - 12x3 + 4x4 + x5) 

29 2(4x + 8x2 + 4x3 - 4x4 + x5) -8x - 36x2 - 16X3 + 12X4 + 2X5 - X6 
-4 - 4x + 12x2 + 8X3 - 9X4 + X5 -4 - 4x + 12x2 + 8X3 - 9X4 + X5 

30 -2(4x + 16X2 + 4x3 - 8x4 + x5) -16x - 36x2 - 32x3 + 12x4 + 4x5 - X6 

-4 - 8x + 12x2 + 16x3 - 9x4 + 2x5 -4 - 8x + 12x2 + 16x3 - 9x4 + 2x5 

-2(-4 + 20x - 28X2 + 4x3 - x4 + x5) 

31 -4 + 24x - 44x2 + 32x3 - 9x4 + 2x5 
-4 + 32x - 48x2 + 40x3 - 37x4 + 12x5 - X6 

-4 + 24x - 44x2 + 32x3 - 9x4 + 2x5 
-2(4 + 16x + 20x2 + 12x3 + 5x4 + 2x5) 4 + 36x + 48x2 + 48x3 + 29x4 + 11x5 + X6 

32 4 + 20x + 28x2 + 24x3 + 9x4 + 3x5 4 + 20x + 28x2 + 24x3 + 9x4 + 3x5 

-2(-256 + 448x - 256x2 + 128x3 - 28x4 + 5x5) 

33 -256 + 576x - 320x2 + 160x3 - 36x4 + 7x5 
-256 + 1216x - 768x2 + 416x3 - 10Ox4 + 21x5 - X6 

-256 + 576x - 320x2 + 160x3 - 36x4 + 7x5 
2(-9 + 34x - 36X2 + 8x3 - 4x4 + 8x5) 

19 - 76x + 108x2 - 48x3 - 20x4 + 16x5 
19 - 40x + 8x2 + 32x3 - 36x4 + 32x5 - 16X6 

19 - 76x + 108x2 - 48x3 - 20x4 + 16x5 

35 4(-4x + 4X3 + X5) 4(4 + 4X2 + 3x4) 
-16 - 4x2 + x6 -16 - 4x2 + x6 

-2(-64 + 128x + 48X2 - 12x4 - 8x5 + x6) 

36 64 - 64x + 368x2 - 96x3 + 92x4 - 4x5 + x6 
64 + 64x + 112x2 - 160x3 + 28x4 + 4x5 + X6 

64 - 64x + 368x2 - 96x3 + 92x4 - 4x5 + x6 
2(-21 - 28x - 25x2 - 8x3 - 3x4 + 4x5 + x6) 

37 1 - 26x - 21x2 - 28X3 - 5X4 - 2X5 + X6 
21 + 50x + 71x2 + 60x3 + 39x4 + lOx5 + 5X6 

1 - 26x - 21x2 - 28X3 - 5X4 - 2X5 + X6 
-2(-64 - 128x + 432X2 - 108x4 + 8x5 + x6) 

8 64 - 704x - 16x2 - 672x3 - 4x4 - 44x5 + x6 38 64 - 832x - 272x2 + 160x3 - 68x4 - 52x5 + X6 

64 - 704x - 16x2 - 672x3 - 4x4 - 44x5 + x6 
2(-4 - 12x - 8x2 + 12x3 + 17x4 + 7x5 + x6) 

39 4 - 8x + 32x3 + 31X4 + 10X5 + +6 
4 + 16x + 12x2 - 8X3 - 5X4 + 4X5 + 2X6 

4 - 8x + 32x3 + 31X4 + lOX5 + X6 

40 -4(-2x + x5) 2(-4 + 4X2 + 12X4 + 4x6 - x8 + X10) 
4 + 2x2 - 2X4 + x6 8 + 20x2 + 8X4 - 4X6 + 2X8 + XIO 
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TABLE 2. (continued) 

k fk gk 
k~~~~~X- OX4 

5 
X6 

9 

4(- 64+384x - 80x +20x - 24x +x6) 

41 64+960x-784x2+800x3 -196x4+60x5+x6 
4(1024-4096x+40192x2_-32768x3 +30848x4- 7680x5 +7712x6-2048x7 +628x8-16x9 +x lo) 

1024+17408x+1 1520x2-11616x3 +111744x4-93824x5+27936x6-6976x7+180x8+68x9 xio 
-4(4 - 24x2 + 48X4 - 36Xb + 7x8) 

42 x(-12 + 48X2 - 60X4 + 24X6 + X8) 
2(-4 + 24X2 - 60X4 + 72X6 - 33X8 + 6X10) 

X2(-12 + 48x2 - 60X4 + 24X6 + x8) 

43 8(x - 6x5 + X9) -2(-1 + 5X2 + 26X4 + 30X6 + 3X8 + X10) 

-3-19x2-42X4-10x6 + X8 + X1o -3-19x2-42X4-10x6 + X8 + X10 

4(6 + 9x + lOX2 + 8x3 + 4X4 + 18X5 + 12X6 + 8X7 - 2X8 - 7x9 + 2x9w) 

44 4 + X + 4x2 + 8X3 + 8X4 + 18x5 + 8X6 + 8X7 + 4X8 + x9 + 4x10 
2(18 + 39x + 50X2 + 24X3 - 12X4 - 2X5 + 20X6 + 24X7 + 2X8 - 25x9 + 2x10) 

4 + x + 4x2 + 8x3 + 8X4 + 18X5 + 8x6 + 8x7 + 4X8 + x9 + 4x10 
-8 X2 

45 (2 + X)2 

-8x 16+8x+X2 

-2+ x2 16 

47 -4(1 + X2) 8(2 + x) 

-1-2x+x2 x(4+x) 

48 -2(-1 + 2X2) 4(4 + 3x) 

3-4x+2X2 x(2+x) 

-2(8 + 8x - 24X2 - 16X3 + 36X4 - 14X5 + X6) 

49 (-2 + X)3X(-2 + x2) 
-16 + 6x - X2 

-4+x 

50 4(-1 - 8x + 7X2 + 32X3 - 7X4 - 8X5 + X6) -2(-3x + 2X2) 
(1 + X)2(1 + 4x + 1OX2 - 4x3 + X4) -4 + 3x 

-2(-4096 + 7168x - 768x2 - 800X3 + 24X4 + 20x5 + x6) 

51 X3(32 - 8X - 4X2 + X3) 
4 -8x+ x2 

(-2 + x)x 

52 0 64 + 16x + x2 
x2 
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TABLE 3. The isogenies 

n j _ oi 82 n i_ _ - 82 

2 1 2 (-?27=11) f49(X) g9(x) 20 1 2 ( 2) 0 92(x) 
1 1 10 1 

2 1 3 2 -2 fl(2x) 4gi(2x) 20 1 3 21 - f2o(2x) g20(2x) 
10 ) 

2 1 0 950(x) 21 1 3 2 -4 4952(-2x) 

3 1 2 (2) 0 ) 492(x) 2124 (2 1) 2 952(4x) 

3 1 3 2 f5l(2x) 952(2x) 2125 I0 47(2x) 

3 -1 4 -2' 22 1 3 (2?I ) -2 952(-4x) 
3 1 4 t o 21 -f5l(-2x) 952(-2x) 2( ) 4 4g52(2x) 

4 12 (8?1?) 0 42() 2225 (4 o) 0 g47(x) 

4 1 3 2 ) 2f51(X) 4g52(x) 23 1 00 ( 8 0 22~~~- 2 (%) g2 97(x) 
-2 (11 

4 14 0 -2f5i (-x) 4952 (-x) 24 1 2 (42) f45(-x) g9 (-x) 
_ _ \ 2 / 24 1 3 (8 2) -2 952(2x) 

6 1 4 (22 ) f33 (X) 933(x) 24 1 4 (xo) 0 947() 

6 2 3 (2? -) f2(X) 92(x) 25 i 2 (- -) 2f45(-2x) 4gx(-2x) 

7 1 3 -f2(x) g2(2) 25 1 3 ( 2f-5) -4 4gl2(4x) 

7 1 4 3 2 1 f33(-2x) g33(-2x) 25 1 ? 0 g47(2x) -2 0 f(X g92(2x) 262 - '1 

8 1 5 1 1 0 94(x 6/ o -2f45(2x) 4gi(2x) 

8 3 5 (2?) 2 g51() 26 1 3 (2? ) 4 4952(-4x) 

8 4 5 0_1 _14 f6(2x) 96(2x) 26 1 4 (20) u g47(--2x) 

-9 1 5 (24 0) 4 949(x) 27 1 2 (42) -f45(x) gl(x) 
9 3 5 (1? 1 42 954(2x) 2713 (? -2f) 2 g52(-2x) 

9 4 5 ( ) f6(x) g6 (2) 27 1 4 (01) 0 g47(-x) 

10 13 (2 l) fi5(x) gh(z 2812 41495 0 g2 x) 

0 1 5 (2 -??) f14(2) 914(x) 28 1 3 (2 _2) f44(x) g44(x) 

/1 0\ 1 01) 

11 1 53 2 2) fi5(-2x) 915(-2x) 28 1 4 0 - f4I(-x) 947(-x) 

5 ( 11) fi4(-2x) g14(-2x) 2 4 2) -2 g46(2x) 

1 I 1 2 (i42 

16 1 2 t 2 12 f16(x) g16(x) 30 1 2 ( -1 -1 4g46(4x) 

17 i 2 (4 -o2) 4f2(x) 16g2(x) 
17 1 5 (2 1) f26(4) 949(x) 

12 1 g276(3x) 2 52(-x 

18 1 2 (95o) -2f2(x) g2(2) 

8 1 5 -1 -1 f26(-2x) 926(-2x) 

19 1 2 2 o 0 92(x) 

193 2 1 3 f2 (x) X29(4x 

-2 13 1 1 flg2) 1(2x028\ 2 
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TABLE 3. (continued) 

n i j ZY sj S2 n i j s1 S2 

31 1 2 20 4 4946(-4x) 63 3 4 (0 -1) f4(X) 94(x) 1 - -1 _______ 2_ 

32 1 2 (4 -2) 2 946(-2x) 64 1 2 (22 2) -fl3(2x) 913(2x) 

33 1 2 (- 0 16g45(2) 64 2 3 (? ) f42(X) 942(x) 

34 1 2 4() f9(-x) g2(-x) 64 3 4 (4 o2) f4(x) 94(x) 

35 1 2 12 12 2fg(-2x) 4g9(-2x) 65 1 2 (22 -2) -fl3(-2x) g13(-2x) 

36 1 2 ( '2 ) -2fg(2x) 4g9(2x) 65 2 3 (2 o) f42(x) 942(x) 

37 2 7 
2 2) -f9( x) 

g 
9( x) 

66 1 I 
22)1 f 13( -x) g13 

(-x 

38 1 2 221) f41(2x) g41(2x) 66 23 (4 ) f42(x) g42(x) 

39 1 2 (-4 -2) f4() g4(x) 66 3 4 (?2o) f4(X) 94(x) 

40 1 2 (824) f41(-x) 949(-x) 71 1 2 40 - 0 g47(-2x) 

41 1 2 ( 121-2f) -f4l(-2x) 941 (-2x) 72 1 2 (4 - ) 0 9471(-x) 

42 1 2 0 16g4(x) 73 1 2 (4 2) 0 947(x) 

43 1 2 ( 4 f5o(2x) 4g22(2x) 74 1 2 01?) 0 g47(2x) 44 1 2 ( 4 f22(-x) 922(-x) 75 1 2 (?2) 0 948(x) 

45 1 3 ( Jr1) f31(x) g31(x) 75 2 3 (2?2 -1) f8(x) g8(x) 

46 1 2 ( 1-1 ) f3l(-x) 931(-x) 75 2 4 (2 2 ) 2fo(x) -2 

47 1 22 0 16g4(x) 00 

4821 2 -4 -?) 0 16945(X) 76 2 3 (o ) 0 94(x) 

49 1 2 ( 4 -o1 ) -2f4s(x) 4gi (x) 76 2 4 (-2o 2fo (x) -2 

50 1 2 21 - -4f45(2x) 46g2(2x) 77 1 2 

51 1 2 ( 14 o4) 4f4s(-2x) l6gi(-2x) 77 2 3 (-22o1) f8(X) 98(x) 

52 1 2 ( -42 7jl) 2f45 (-x) 4gi (-x) 77 2 4 (-20-2 2fio (x) -2 

5312 22 f38(2X ) 7812 ( ?2-) 0 g48(x) 

54 1 2 1( 2) f38(x) g38(x) 78 2 3 (-2 ) f8(x) g8(x) 

55 1 2 1-4 -22) f38(-X) 938(-x) 78 2 4 4-42 2flo(x) -2 

56 
I2 2 -2 

f38(-x(-2x) 
-x79 2( -10 ) f30 (x) g3o (x) 

57 1 2 ( -48 -2 ) -4 4g46 (x) 80 1 2 ( 2 ol1) f28 (x) g28 (x) 

58 1 2 (- 8 16g46(-2x) 81 12 021 0 92(x) 

2-1) 10 

63 1 2 ( -4 2) f03(x) 943(x) 82 1 2 1 -1) f36(2x) 936(2x) 

63 2 3 (4) f42(x) g42(x) 
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TABLE 3. (continued) 

n 29 Si 82 n _ _ Si 82 

82 2 3 ( -o2) f43(x) 943(x) 94 2 4 (2 ?)) f3(x) 93(x) 

82 3 4 (o -1) f35(X) 935(x) 94 3 4 ( 21 fl7(x) 917(x) 

83 1 2 (-4 2) f36(x) 936(x) 95 1 3 (?4) f5(x) g5(x) 

83 2 3 (0-j) f43(x) g43(x) 95 2 4 (2jlo) f3(x) g3(x) 

83 34 (04-2 ) f35(x) g35(x) _95 3 4 (o ?1) -f17(x) g17(x) 

84 1 2 (i'-4 2) -f36(-x) g36(-) 96 1 3 (-44 2) f5(-X) 95(-X) 

84 2 3 ( -o ) f43 (x) 943 (x) 96 2 4 (2ol ) -f3 (x) 93 (x) 

84 3 4 (o -2) f35 (x) 935 (x) 96 3 4 ( 01) fl7(x) 917(X) 

85 1 2 (4- ) -f36(-2x) 936(-2x) 97 1 3 ( -2) -f5(-2x) g5(-2x) 

85 2 3 (~ ?2 -o2) f43 (x) g43 (x) 97 2 4 (2 -?1) -f3 (x) 93 (x) 

34f3(x - 

85 3 4 (O -1 ) 935(x) 96 3 4 ( -l ) fl7(X) 17(x) 

86 1 2 (142) -f96Qx) g93(-2x)0 

86 11 14 ( 2 1) f24(9) g924()9 1 2 0)1 ? g2(x) 

86 3 4 
| 2f9(2x) |4g9(2) 

99 1 2 ( ) 0 4g2(x) 
1 

87 2 3 (222) f5(2x) 95(2x) 101 1 2 4 l ?) f32(-x) 932(-x) 

87 2 3 (c2 -2f4(x) 4g4(x) 102 1 12 (1 g)() 

8534 - 1~ f185(X) 935 (x) - - f() 

88 1 4 (i44) f5(x) g5(9) 103 1 2 (4 1) f29(x) 929(x) 

88 23 ( 4 ?) -2f4(x) 4g4(x) 104 12 ( -2i-? f46(x) -2 

88 2 4 (4o2) f18(x) g28() 105 1 2 (o21) -f46(x) -2 

89 1 4 (-4 _) f5(-X) g5(-x) 106 1 3 _ X) f7(x) g7(x) 

89 2 3 ( ) -2f4(x) 4g4 (x) 107 1 3 (02 f7(x) g7(x) 

89 2 4 ( o -?22) f18 (x) g189(x) 110 1 2 (41 ) f0(x) 492 (x) 

90 1 4 (- z22) -f5(-2x) 95(2X) 110 1 4 (x)) f21(x) g21(x) 

90 2 3 (4 ) -2f4(x) 4g4(x) 111 1 3 ( 7l1?) fw9(x) g19(x) 

90 2 4 ( o-22) f18 (x) g18 (x) 111 1 5 (i1?1) f21 (x) g21 (x) 

93 1 2 (42'4 f9(x) g9(x) 112 1 2 (1 f11(x) 2gii(X) 
86 1 4 (1 -1 f23(x) g23(x) 113 1 2 

4 
J2 fii(x) 2gii(x) 

93 3 4 ( ) -2fg(-2x) 4gg(-2x) 118 1 2 ( 4 o) f4o(x) 940(x) 

94 13 (4 l) f5(2x) 95(2x) 11912 (%) f4o(x) g40(x) 

120 1 2 (2) f4o(X) 940(X) 
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TABLE 3. (continued) 

n li jl Z I Sj I S2 I n li lj ) I S1 S2 | 

121 1 2 (4oo2) f4o(x) g40(X) 144 214 -a1-11 f8(2x) gil (2x) 

126 2 3 9 -1 f37(X) g37(X) 145 2 3 (1 -2) f48(2x) gil (2x) 

127 1 4 971 f37(x) g37(X) 150 1 2 (2) fio(x) glo(x) 

130 1 2 (2) f39(x) g39(X) 151 1 2 ( 10) flo(x) gio(x) 

131 1 2 ( )2 0 f39(X) 939(X) 152 1 2 (10) fio(x) glo(x) 

132 1 2 (-22 ) f34(X) 34(X) 153 1 2 (1 2) flo(x) gio(x) 

133 1 3 -2 -2 f34(X) 934(X) 154 2 3 - I- f12(X) g12(X) 

134 1 2 ( -?2) f48(2X) g11(2X) 155 1 3 (2 2) fl2(x) gl2(X) 

135 1 2 ( -2 f48(2X) 934(2X) 16013 -2 f47(x) -2 

140 1 2 ( -?2) f25(X) g25(X) 161 1 3 -1 f47 (X) -2 

141 1 2 (0 -2 f25(X) g34(X) 1 -1 

42 1 2 ( -?2)-f25(x) g25(x) 163 1 3 (2 -?2 f47(X) -2 

143 1 2 (2 -2) f25(X) 925(X) 
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